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PREFACE 

This technical report presents the results of a ten-month study, 

sponsored by NASA-Ames Research Center under Purchase Order No. A39603C, 

dated April 22, 1986. Dr. Demetrius A. Kourtides served as the 

NASA-Ames Technical Monitor. 

All work was conducted by the Composite Materials Research Group 

(CMRG) within the Department of Mechanical Engineering at the University 

of Wyoming. Co-Principal Investigators were Mr. Richard S .  Zimmerman, 

Staff Engineer, and Dr. Donald F. Adams, Professor. Making significant 

contributions to this program were Messrs. Byron Johnson and Hal 

Radloff, undergraduate students in Mechanical Engineering and members of 

the Composite Materials Research Group. 

Use of commercial products or names of manufacturers in this report 

does not constitute official endorsement of such products or 

manufacturers, either expressed or implied, by the National Aeronautics 

and Space Administration. 
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SECTION 1 

INTRODUCTION 

Five types of ceramic fibers were static tensile tested at room 

temperature and four elevated temperatures, and creep tested at four 

elevated temperatures. To do so, single fibers were separated from tows 

supplied by NASA-Ames. Initially, the five ceramic fibers chosen for 

this program were J.P. Stevens Co. Astroquartz 9288 glass fiber, Nippon 

Carbon, Ltd. (Dow Corning) Nicalon NLM-102 silicon carbide fiber, and 3M 

Company Nextel 312, Nextel 440, and Nextel 480 alumina/silica/boria 

fibers. It proved to be impossible to separate single Nextel 440 fibers 

from the tows supplied because of the fiber sizing present and the 

brittle nature of these fibers. Therefore, Nextel 380 was substituted 

for the Nextel 440 in this program. 

The complete test matrix is given in Table 1. ASTM Standard Test 

Method D3379-75 was used as the reference test procedure for all 

testing [l]. 

Each type of fiber was initially static tensile tested at three 

gage lengths, viz., 1, 2, and 4 inches, at room temperature, to 

determine the magnitude of end effects from the paper end tabs and 

grips. No creep testing was performed at room temperature. Each type 

of fiber was also initially static tensile tested at two gage lengths, 

viz., 8 and 10 inches, at one of the elevated test temperatures, to 

determine end effects for the elevated temperature static and creep 

t e s t i n g .  An end effect correction was found to be unnecessary for the 
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Table 1 

Tes t  Matrix f o r  Each Type of Ceramic F ibe r  

Tes t  Test  Gage N o .  of 
Method Temperature Length Rep l i ca t e s  

( " C )  ( inches)  

As t roquar tz  9288 S t a t i c  25 

500 

600 
700 
800 

Creep 400 
500 
600 
7 00 

Nicalon NLM-102 S t a t i c  25 

1000 

1100 
1200 
1300 

Nextel 312 

8% 
900 

1000 
1100 

S t a t i c  25 

400 
500 

600 
700 

Creep 400 
500 
600 
700 

1 
2 
4 
8 

10 
8 
8 
a 

1 
2 
4 

10 
8 
8 
8 

a 

3 

8 
8 

a 

1 
2 
4 
8 
8 

10 
8 
8 

10 
10 
10 

5 
5 
5 
5 
5 

10 
10 
10 

5 
5 
5 
5 
5 

10 
10 
10 

5 
5 
5 
5 
5 
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Fiber Type 

Table 1 (continued) 

Test Matrix for Each Type of Ceramic Fiber 

Test Test Gage No. of 
Method Temperature Length Replicates 

("C) ( inches ) 

Nextel 380 Static 25 

600 

700 
800 
900 

Nextel 480 

Creep 

Static 

500 
600 
700 
800 

25 

900 
1000 

1100 
1200 

Creep 700 
800 
900 

1000 

1 
2 
4 
8 

10 
8 
8 
8 

1 
2 
4 
8 

10 
8 
8 

a 

10 
10 
10 

5 
5 
5 
5 
5 

10 
10 
10 

5 
5 
5 
5 
5 
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elevated temperature testing. All subsequent elevated temperature 

testing, both static and creep, was thus performed utilizing only 8 inch 

long specimens. 

As will be noted in Table 1, the creep test temperatures used were 

slightly lower than the static tensile test temperatures. This was to 

compensate for the much longer time the fibers being creep tested spent 

at the elevated temperatures, these high temperatures for long times 

causing severe degradation of the fibers. Static testing nominally 

subjected each fiber to the elevated temperature for only 1 to 3 

minutes. The creep test duration was nominally four hours. Exposure in 

an air atmosphere at the highest temperatures for this comparatively 

long time was found to degrade the ceramic fibers too much. Thus, lower 

test temperatures for creep were utilized to ensure properties could be 

measured. 

A summary of all of the test results is presented in the next 

section. Specimen fabrication techniques and descriptions of the test 

apparatuses used are included in Section 3. Test methods and detailed 

experimental results are given in Section 4 .  Conclusions are given in 

Section 5. Appendix A contains the individual single fiber static 

tensile test results, while Appendix B contains individual tensile creep 

test results. Appendix C contains additional SEM photographs taken by 

the Composite Materials Research Group and NASA-Ames Research Center and 

sent to the CMRG for inclusion in this report. 

3 



SECTION 2 

SUMMARY OF RESULTS 

Single fiber static tensile and tensile creep te ting at v r ious 

elevated temperatures was performed on five types of ceramic fibers 

supplied by NASA-Ames. All fibers were supplied as untwisted ravings? 

both sized and unsized. The single fibers used for all testing were 

carefully separated by hand from the unsized rovings. It was found that 

sized fibers could not be utilized since the fibers adhered to each 

other to such a great degree that individual fibers could not be 

extracted from the fiber bundles without damaging them. 

Static testing was performed on each of the five types of ceramic 

fibers at five temperatures, viz.? room temperature and four elevated 

temperatures, to provide baseline data for each fiber type. Creep 

testing revealed that the fibers degraded in only a short time (5 to 20 

minutes) during air atmosphere exposure at the higher temperatures. 

Thus, the creep testing was performed at lower temperatures than those 

used for static testing. Because of the differences in temperature 

sensitivity of the different types of fibers, each type was tested at a 

slightly different set of elevated temperatures, selected to be 

consistent with the sensitivity of that particular fiber. It should be 

noted that those fibers that performed the best at the highest elevated 

temperatures when tested in static tension also exhibited the lowest 

creep rates. All creep tests were conducted at a stress level 

approximately equal to 80 percent of the corresponding static tensile 

strength measured at each fiber's highesttest temperature. This creep 

stress level stress level was set by NASA-Ames. The strain measurement 



limit was 2 percent, dictated by the small LVDTs used to measure fiber 

displacements and the long specimen gage lengths. 

Data are presented in graphical form in this summary, to provide 

the reader with relative magnitudes and temperature capabilities for the 

five different types of ceramic fibers. As will be noted, the test 

temperatures were quite different. Thus, comparisons of fiber 

properties should be made carefully, to avoid improper conclusions as to 

the capability of each fiber at elevated temperature. For each of the 

types of fibers, testing was performed up to the highest temperature 

that still yielded reasonable mechanical properties. It was found that 

properties fell dramatically above the highest temperatures reported 

here. 

Average static tensile properties are shown in Figures 1 through 3 

while average tensile creep rates are shown in Figure 4. As discussed 

in the Introduction, the maximum tensile creep test temperatures were 

slightly lower than those used for static testing. The average data 

presented here in graphical form are presented again in tabular form in 

Section 4. Individual test specimen results are presented in Appendices 

A and B. 

Some experimental work had been performed previously by other 

researchers using fiber tows to determine similar properties for the 

five materials tested in this study [2-41. Considerable effort was 

expended here in developing the required test apparatus for performing 

single fiber static tensile and tensile creep tests. 

Single fiber testing requires a great deal cf patience and care in 

specimen preparation due to the fragile nature of the fibers and the 

affinity of the fibers for other fibers in the tow. Careful handling is 

6 
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a )  T e n s i l e  creep rates c a l c u l a t e d  between one-half hour 
and one hour. 

b) T e n s i l e  creep rates c a l c u l a t e d  between one-half hour 
and end of t e s t .  

F igu re  4 .  T e n s i l e  Creep Rates of  C e r a m i c  F i b e r s  a s  a Funct ion of 
Temperature. 
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also critical once specimens are fabricated, to ensure the fiber 

specimens are not damaged prior to testing. 

After testing, each specimen was examined in an optical microscope 

to determine the fiber diameter and cross-sectional shape. Also, a 

scanning electron microscope (SEM) was used to photograph groups of 

fibers, to provide an overall indication of the fiber diameters and 

shapes, and their variations. 

The test specimen configuration and test apparatuses used for 

static tensile and tensile creep are described in detail in the next 

section. 

11 
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SECTION 3 

SPECI” FABRICATION AND TEST METHODS 

3.1 Specimen Fabrication 

Single fibers were carefully separated from tows supplied by 

NASA-Ames, using a lighted magnifying lens. Small tweezers and gentle 

pulling with fingers were necessary to remove single fibers from the 

tows. Due to the delicate nature of the ceramic fibers, often many 

attempts were necessary before an intact fiber was successfully 

separated from a tow. Also, as previously noted, only unsized tows 

could be used; the fibers stuck to each other too firmly in the sized 

tows. 

Single fiber test specimens were prepared from the five different 

types of ceramic fibers following the guidelines in ASTM Standard Test 

Method D3379-75 [l]. Figure 5 is a photograph of typical single fiber 

specimens of different gage lengths used in the room temperature 

testing . 
A test specimen was prepared as follows. A stiff paper card (e.g., 

an index card) was cut into one-inch wide pieces, of a length 

appropriate for the gage length of the particular fiber to be tested. A 

diamond-shaped cutout was then made in the center region of this card, 

leaving a narrow strip of paper at each side of the one-inch width. A 

single fiber was stretched along the centerline of the length of the 

cutout, and temporarily held in place with masking tape near each outer 

end of the card. A small drop of a&’lcsive was then placed at each end 

of the cutout, to permanently hold the fiber in place on the card. 

Thus, the length of the diamond-shaped cutout in the card defined the 
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Figure  5. T y p i c a l  S i n g l e  F i b e r  T e s t  Specimens Used f o r  A l l  Room 
Temperature S t a t i c  Tens i l e  Tes t ing .  
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gage length for the fiber test specimen. For example, the test 

specimens used in the room temperature static tensile testing were 

prepared by making the length of the diamond-shaped cutout either 1, 2, 

or 4 inches, as shown in Figure 5. 

The adhesive used was Type A-12 manufactured by Techkits, Inc. of 

Demarest, New Jersey. This adhesive is a two-part epoxy adhesive used 

extensively for bonding tabs onto composite material specimens, and has 

good mechanical properties up to 177°C. This adhesive could be used for 

all testing, including that at elevated temperatures, since the bond 

areas were outside the furnace and thus remained well below 177°C. 

The 8 and 10 inch gage section specimens used for the elevated 

temperature static tensile and tensile creep testing were fabricated as 

follows. First, two pieces of the same paper card material used for the 

room temperature static testing, each piece being approximately one-inch 

square, were taped onto a large piece of corrugated cardboard, at a 

distance of 8 or 10 inches apart, depending upon the test specimen gage 

length desired. A single fiber was then temporarily held in place 

between the t w o  pieces of card, using masking tape near the outer end of 

each card. The fiber was then bonded to each card using a small drop of 

the Techkits A-12 epoxy. Many of these single fiber specimens could be 

mounted on one large piece of corrugated cardboard, for safe storage 

prior to testing. 

A special clip assembly consisting of a stiff metal rod separating 

two small alligator clips was used when transferring each single fiber 

test specimen from the corrugated cardboard storage board into the grips 

of the testing machine. This permitted the insertion of the single 

fiber specimen into the grips of the testing machine without damaging 

14 
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the fiber. The clip assembly was removed just prior to testing, leaving 

the fiber to carry the applied force. Figure 6 shows a typical single 

fiber test specimen being held by the special clip assembly used for all 

elevated temperature testing. 

3.2 Room and Elevated Temperature Static Tensile Test Apparatuses 

All room temperature static tensile testing was performed using an 

Instron Model 1125 electro-mechanical testing machine with a 20 Newton 

load cell and special spring-loaded fiber grips manufactured by Instron 

Corporation. A test specimen such as one of those shown in Figure 5 was 

placed in the grips and an Engel Type HSGO heat cutter, with a Type lOOR 

cutting blade, was used to burn through the two narrow sides of the 

paper card just prior to testing. Force versus crosshead displacement 

data were acquired using the integral strip chart recorder on the 

Instron Model 1125 testing machine. 

Elevated temperature static tensile testing was performed using an 

MTS Model 810 servo-hydraulic testing machine, and the same 20 Newton 

load cell and fiber grips used for the room temperature testing in the 

Instron testing machine. The test specimen configuration was as shown 

in Figure 6. A Hewlett-Packard Model 7044A X-Y recorder coupled to the 

MTS Model 810 testing machine was used to record load versus crosshead 

displacement data for each test specimen. 

Temperature chambers fabricated by the CMRG specially for this 

testing program were used to heat the test section of the single fiber 

specimen. Considerable consultation and assistance relative to 

temperature chamber size, shape, and configuration was provided by 

Dr. Demetrius Kourtides of NASA-Ames. 

15 
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Two pieces of Greenlite 33 refractory brick, purchased from A.P. 

Green of San Fransisco, California, were bolted together, with a spacer 

between each half to form a vertical slot. Cavities were machined in 

the refractory brick to provide spaces for wire-wound heating elements. 

Kanthal A-1 18-gauge wire was purchased from Duralite, Inc., Riverton, 

Connecticut, for use as the heating element wire. Initially, short 

circuits and heater burnouts within the temperature chambers were common 

occurrences, usually due to the heater elements distorting and sagging 

since no support cores were used. Machinable ceramic rod was then 

purchased from McMaster-Carr, Chicago, Illinois, and used to provide 

support for the heating coils, as found to be particularly necessary 

when testing at the highest test temperatures. A spiral groove was 

machined around the ceramic rod circumference to hold the heater wire in 

place. Figure 7 shows a typical heater assembly with heater wire and 

ceramic core. 

The temperature chamber was mounted on a slide attached to the MTS 

Model 810 testing machine, which allowed it to be pushed back out of the 

load t r a i n  between tests, making installation of the next specimen much 

easier. The slide assembly also permitted vertical adjustment of the 

temperature chamber to accommodate test specimens of different lengths, 

by the use of spaced holes in its vertical support columns. Figure 8 

shows a typical temperature chamber mounted on the slide assembly, with 

a single fiber specimen in place. The upper paper tab and fiber grip is 

hidden by an aluminum foil radiation shield. 

A thermocouple was used to monitor temperature in each temperature 

chamber. A Type 'IS, " platinum/platinum-5% rhodium, thermocouple was 

used, which provided good resolution in the temperature range from 500 

17 
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Figure 7 .  Two Halves of High Temperature Furnace, Showing Heater 
Elements, Grooved Ceramic Cores, Power Leads, and Machined 
Cavities for Heater Elements. 

Figure 8. Single Fiber Tensile Test Setup, Showing the Temperature 
Chamber, Controller, Lower Grip, and Aluminum Heat Shield 
Around the Upper Grip. 

18 



to 1300°C. The thermocouple was mounted in the temperature chamber at 

the middle of the heated zone, to monitor the temperature and thus to 

allow for controlling the furnace temperature. The temperature was 

controlled using a Barber-Coleman Model 5643 digital temperature 

controller calibrated for the Type "S" thermocouple. The temperature 

controller was capable of maintaining the temperature in the chamber to 

within 5 to 10°C of the setpoint value, as determined by temporarily 

installing and simultaneously monitoring two additional thermocouples. 

High amperage (25 amp) silicon controlled rectifiers (SCR's) were 

coupled to the controllers to actually supply power to the heating 

elements. Auxiliary heater elements wired in series with the 

temperature chamber elements were necessary to lower the amperage 

passing through the circuit since the heating elements were of too l o w  

resistance to limit the current by themselves. Electric water heater 

elements were utilized as the auxiliary heater elements. The auxiliary 

heaters were housed in water jackets to remove the heat generated when 

operating the heaters. 

A top cover plate for the chamber was constructed using one-inch 

thick rigid insulation. This  cover plate was used to minimize 

convective air currents within the temperature chamber, and thus help 

minimize any thermal gradients within the chamber. This cover plate 

contained a small slot, to permit it to pass around the fiber specimen. 

The cover was then rotated g o " ,  to minimize the opening. This resulted 

in a small hole at the top of the chamber for the fiber to pass through. 

A 30 to 5OoC thermal gradient from the top to the bottom of the chamber 

typically still existed even with the cover plate in place, as again 

19 



determined using two auxiliary thermocouples positioned away from the 

primary sensor. 

As shown in Figure 8, the the top and bottom paper tabs of the 

single fiber test specimen, held in the testing machine by the 

spring-loaded grips, were well outside of the heat zone created by the 

temperature chamber. The top grip and top paper tab region were further 

protected from convective heat currents by using an aluminum foil heat 

shield positioned between the furnace and the top paper tab area, as 

shown in Figure 8. This heat shield contained a small slot to allow the 

fiber to pass through untouched. 

3.3 Creep Test Apparatus 

A special creep test facility was designed and fabricated, to 

permit the testing of single fibers at very high temperatures while 

accurately measuring fiber extension (creep) throughout the nominal 

four-hour duration of a typical creep test. Figure 9 shows the 

single-fiber creep frame assembly, with controllers, temperature 

chambers, grips, linear variable differential transformers (LVDT'S), 

dead weights, wind shields, and auxiliary heaters in place. Four 

independent creep frames were used, to allow for multiple specimen 

testing . 
The four Barber-Coleman Model 5643 temperature controllers shown 

mounted on top of the creep apparatus in Figure 9 were of the same type 

used with the static testing apparatuses described in the previous 

subsection. The temperature chambers were also of the same construction 

as used for the static tensile testing. 

20 
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Figure 9. Four-Station Single Fiber Creep Apparatus Showing Temperature 
controllers, Temperature Chambers, Wind Shields, and LVDT 
Instrumentation. 
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The bottom grip assembly was different, however, to permit the 

hanging of dead weights at the bottom of the load train, and to permit 

the measurement of fiber extension (creep) by the use of LVDT's mounted 

between the fibers and the dead weights. An adjustable hook was used to 

hold the lower fiber tab stationary while hanging the dead weights and 

adjusting the vertical position of the upper load train to zero the 

LVDT's, to prevent premature loading of the fiber. Wind shields were 

used to surround the dead weights, to prevent natural air currents in 

the testing laboratory from inducing any movement of the lower portion 

of the load train. 

Data were acquired using a Northstar 2-80 computer. Temperature 

readings from the thermocouples and extensions from the LVDT's were 

recorded by the computer and stored on a floppy disk for later retrieval 

and transfer. After completion of a test, the data were transferred to 

a Control Data Corporation Cyber 760 mainframe computer for reduction 

and plotting. All design and construction of both the static test 

apparatus and the creep apparatus was performed by the Composite 

Materials Research Group at the University of Wyoming. 

3.4 Roam and Elevated Temperature Static Tensile Test Methods 

The guidelines included in ASTM Test Standard D3379-75 [ l ]  were 

followed in performing all of the single fiber testing in this study. 

Room temperature static tests were performed using the Instron 

Model 1125 testing machine with spring-loaded single fiber grips 

previously described. Gri? spacing was set to the appropriate distance 

to accommodate the three different gage length specimens used in the 

room temperature testing, viz., 1, 2, and 4 inches. A specimen was 
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placed in the grips and the narrow sides of the paper card were 

carefully burned through using the heat cutter. This left the single 

fiber unsupported, free to carry the applied force directly. Loading 

rate was set at 1 mm/minute (0.04 inch/minute). Force-displacement 

plots were obtained using the chart recorder built into the Instron 

testing machine. 

After failure, each fiber was examined in an optical microscope to 

determine its diameter and cross-sectional shape, for comparison with 

scanning electron microscope (SEM) measurements. Individual fiber 

tensile strength, modulus, and strain to failure was calculated, using 

the average fiber cross-sectional areas determined from the SEM 

photographs. 

A static tensile test procedure for elevated temperature testing 

was developed using the experience gained while testing at room 

temperature. The MTS Model 810 load frame was set up with the single 

fiber grips and the special temperature chamber previously described. A 

single fiber test specimen was then transferred to the testing machine 

us ing  the t w o  clips and rod assembly. The paper tabs were mounted in 

the grips with as little initial tension in the fiber as possible. Some 

slight tension was necessary, however, to prevent the fiber from moving 

due to the convective currents generated in the temperature chamber. 

This slight preload was equivalent to the weight of the bottom paper 

tab, i.e., about 0.3 grams, which was sufficient to prevent the fiber 

from accidentally contacting the heating elements prior to testing. 

The temperature chamber was slid forward along the support slides 

until the thermocouple in the chamber was as close as possible to the 

fiber without making contact. The one-inch thick block insulation with 
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a slot in one side was then placed around the fiber at the top of the 

temperature chamber and rotated 90°. The slotted heat shield of 

aluminum foil was placed as close as possible around the fiber above the 

furnace to protect the top paper tab and grip. Loading was begun when 

the furnace stabilized at the desired test temperature. Temperature 

chamber heat-up typically took only 1 to 3 minutes. 

Crosshead rate was set at 1 mm/minute (0.04 inch/minute). 

Load-displacement plots were made directly on a Hewlett-Packard 7044-A 

X-Y recorder. Tensile strength, modulus, and strain were calculated 

using average fiber diameter measurements taken from SEM photographs. 

3.5 Single Fiber C r e e p  T e s t  Method 

Single fiber creep testing, only performed at elevated 

temperatures, was achieved utilizing the special single fiber creep 

frame designed and constructed for this program. The creep tests were 

more complicated than the static tensile tests, due to the need to 

ensure zero applied force at the start of the creep test, and the need 

to accurately monitor the displacement for a period of four hours. 

Exposing the ceramic fibers to high temperatures in an air environment 

for four hours presented problems for the fibers as well as the heating 

elements in the temperature chambers. 

The fibers were severely degraded at the higher temperatures used 

for the static testing and thus were necessarily creep tested at lower 

temperatures. The heating elements required replacement periodically 

due to their excessive creep characteristics at the high test 

temperatures, which caused them to sag excessively, and fail. 
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Before beginning a t e s t ,  t h e  suppor t  arm and wire hook assembly of 

t h e  f i b e r  l oad ing  system was r a i s e d  u n t i l  t h e  LVDT core w a s  a t  t h e  t o p  

of t h e  calibrated range. The t o p  f i b e r  tab w a s  t h e n  mounted i n  t h e  t o p  

g r i p .  The bottom tab w a s  p l aced  over t h e  b o t t o m  wire hook u s i n g  t h e  

v e r t i c a l  adjustment  nut .  The a p p r o p r i a t e  dead weight f o r  t h e  tes t  w a s  

hung on t h e  bottom hook under t h e  load frame and t h e  wind s h i e l d  was 

p laced  around t h e  weight and lower hook and w i r e .  N o  f o r c e  was y e t  

sensed by t h e  f i b e r  s i n c e  t h e  bottom tab w a s  s t i l l  h e l d  by t h e  suppor t  

arm hook. The t o p  g r i p  was moved back and f o r t h  t o  p o s i t i o n  t h e  f i b e r  

a d j a c e n t  t o  t h e  thermocouple i n  t h e  temperature  chamber. 

The one-inch t h i c k  i n s u l a t i o n  b lock  was then  p l aced  on t o p  of t h e  

chamber and rotated 90° t o  block o f f  t h e  t o p  around t h e  f i b e r .  The d a t a  

a c q u i s i t i o n  computer program w a s  a c t i v a t e d ,  t o  r eco rd  temperature and 

displacement  f o r  t h e  du ra t ion  of t h e  creep test. The suppor t  arm w a s  

t hen  lowered away from t h e  lower f i b e r  t ab  and t h e  f i b e r  p o s i t i o n  was 

checked t o  ensu re  it was st i l l  l o c a t e d  a d j a c e n t  t o  t h e  thermocouple i n  

t h e  fu rnace .  S l i g h t  adjustments  were sometimes necessary t o  c e n t e r  t h e  

f i b e r  i n  t h e  chamber a t  t h e  beginning of t h e  c r e e p  test .  

Creep tests were r u n  f o r  f o u r  hour s ,  w i th  t h e  computer a c q u i r i n g  

and r e c o r d i n g  t h e  d a t a  on a 5 1 /4  I' f loppy  d i s k .  Load, temperature ,  and 

displacement  data were then  t r a n s f e r r e d  t o  t h e  Control  D a t a  Corporat ion 

Cyber 760 mainframe computer f o r  later p l o t t i n g  and r educ t ion .  

C a l c u l a t i o n s  of f i b e r  stress, s t r a i n ,  and modulus were performed 

u s i n g  t h e  average f i b e r  c r o s s - s e c t i o n a l  area measurements obtained u s i n g  

t h e  SEM, 1s d i scussed  i n  Sec t ion  4.1.  Two d i s c r e t e  c r e e p  rates were 

c a l c u l a t e d  f o r  each f i b e r  by c a l c u l a t i n g  t h e  s l o p e  of t h e  s t r a i n  versus 
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time curve between f hour and one hour of creep and between f hour and 

the end of each creep test, as discussed in Section 4.3. 

After each test, the fiber was removed and examined in an optical 

microscope. Fiber geometry data were compared to average SEM 

measurements for each fiber type. 
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SECTION 4 

E X P E " T A L  RESULTS 

The five fibers tested were J.P. Stevens Astroquartz 9288 glass 

fiber, Nippon Carbon, LTD. (Dow Corning) Nicalon NLM-102 silicon carbide 

fiber, and 3M Company Nextel 312, Nextel 380, and Nextel 480 

alumina/silica/boria fibers. These five ceramic fibers were static 

tensile tested at room temperature and four elevated temperatures, and 

tensile creep tested at the four elevated temperatures listed in Table 1 

of Section 1. No creep testing was performed at room temperature. 

Mechanical properties as a function of temperature, viz., Young's 

modulus, tensile strength, tensile strain, and creep strain, for the 

five types of fibers were then determined at each test temperature. 

Average test results are presented here while individual test data 

are given in Appendices A and B. 

4.1 Optical and Scanning Electron Microscope Observations 

All fiber types were photographed using a scanning electron 

microscope (SEM) to determine their typical shapes and diameters. This 

determination was very important since in was necessary to calculate the 

fiber cross-sectional areas. Optical microscope measurements were also 

made for all types of fibers, and the results compared with the SEM 

measurements. The optical and SEM measurements were in reasonable 

agreement, with the optical measurements typically being slightly 

smaller. This may have been due to the lower magnification used and 

some lighting problems encountered with the optical microscope 

measurements. For the present study, all data were reduced using the 
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average cross-sectional area values determined from the SEM photographs. 

Due to fiber to fiber size variations, this introduced some scatter in 

the data, particularly for the types of fibers that exhibited greater 

geometric variations. 

The five types of fibers were found to conform closely to the 

corresponding sizes and shapes published in the literature [3-5, 71. 

For example, the Astroquartz 9288 glass fibers were observed to be round 

in cross-section, with an average diameter of 8.75 microns. A typical 

literature value was 9.0 microns [SI. Figure 10 shows an SEX photograph 

of a group of Astroquartz fibers. 

The Nicalon "-102 fibers were also round in cross-section, with 

an average diameter of 10-15 microns, comparing reasonably well with the 

range of 10-20 microns given in the literature [ 3 ] .  Figure 11 is an SEN 

photograph of a group of Nicalon fibers, showing the variability in size 

observed. 

The three types of Nextel fibers tested were found to all be 

roughly elliptical in shape, with consistent dimensions between the 

three types. That is, they had similar minor and major diameters, 

varying from 8 to 13 microns, which were consistent with the values 

published in the literature [4]. 

Reference [8] contains an equation, repeated below as Eq. (l), used 

by 3M Company to calculate the approximately elliptical area of the 

Nextel fibers. 

Area = (majcr dia.) x (minor dia.) x (0.87) 
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Figure  10. Scanning Elec t ron  Microscope Photograph of a Group 

Ast roquar tz  9288 F i b e r s .  
of 

Figure  11. Scanning E lec t ron  Microscope Photograph 
Nicalon "-102 F i b e r s .  
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The equation for a true ellipse is: 

Area = (major dia.) x (minor dia.) x (n/4) ( 2 )  

Following the recommendation of the manufacturer of the Nextel fibers, 

viz., the 3M Company, Eq. (1) was used in making the calculations of the 

present study. 

Figures 12, 13, and 14 are SEM photographs of groups of Nextel 312, 

Nextel 380, and Nextel 480 fibers, respectively. 

NASA-Ames performed additional scanning electron microscope 

photography of some of these same fibers, photographs which they 

provided being included in Appendix C along with additional SEM 

photographs taken at the University of Wyoming. 

Comparisons of fiber sizes and shapes obtained from the various 

microscope studies performed are given in Table 2. As will be noted, 

Table 2 

Average Fiber E i m x s i c n s  3 s  HeasLred f r o m  
Optical and Scanning Electron Microscope Photographs 

Fiber Type Fiber UW Optical uw SEM NASA-Ames SEM 
Shape (w)  (w) (P) 

Astroquartz 9288 round 6.7 8.75 8.84 

Nicalon NLM-102 round 11.7 13.8 - 

Nextel 312 ellip. 7.5 by 11.9 7.8 by 12.5 9.2 by 13.9 

Nextel 380 ellip. 7.2 by 12.3 8.2 by 13.2 - 

Nextel 480 ellip. 6.7 by 11.1 7.2 by 11.5 - 
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ORIGINAL PAGE IS 
OF POOR QUALITY 

Figure  12. Scanning E l e c t r o n  Microscope Photograph of a Group of Nextel 
312 F i b e r s .  

F igu re  13. Scanning E l e c t r o n  Microscope Photograph of a Group of Nextel 
380 F i b e r s .  
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Figure  14 .  Scanning E lec t ron  Microscope Photograph of a Group of Nextel 
480 F i b e r s .  

3 2  
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photographs of only two of the five types of fibers were provided by 

NASA-Ames . 

4.2 Static Tensile Test Results 

Table 3 presents average static tensile strengths, moduli, and 

strains to failure for the five types of ceramic fibers tested. The 

five types of fibers were tested at the highest temperatures that still 

gave reasonable mechanical properties for that type of fiber. Each 

fiber was tested at slightly different temperatures, as indicated in 

Tables 1 and 3. 

Fiber strength was the major parameter used in establishing the 

highest temperatures the fibers were to be tested at. It will be noted 

in Table 3 that the fiber modulus values do not show as much of a drop 

as the fiber strengths. All of the fibers suffered losses in tensile 

strength at the higher test temperatures well before they exhibited much 

loss of stiffness. 

Table 3 also presents average static tensile strains to failure for 

the five types of ceramic fibers tested in this program. As will be 

noted, the average ultimate strains for all of the fibers were less than 

two percent, and did not vary significantly as a function of test 

temperature. 

4.3 Creep Test Results 

Table 4 presents average creep rates calculated in the time 

intervals between one-half hour and one hour, and between one-half hour 

and the end of the test (normally four hours). Tests were conducted at 

each of four elevated test temperatures. It w i l l  be noted that the four 
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Table 3 

Average Tensile Properties for the Five Types of Ceramic Fibers 
Tested at Five Test Temperatures 

Fiber Gage Test Tensile Tensile Tensile 
Type Length Temperature Strength Modulus Strain 

( inches ) ("C) (ksi) (GPa) (Msi) (GPa) (percent) 

Astro- 
quartz 

9288 

Nicalon 
NLM- 102 

Nextel 
3 12 

Nextel 
380 

Nextel 
380 

1 
2 
4 

10 
8 
8 
8 
a 

1 
2 
4 

10 
8 
8 
8 
8 

1 
2 
4 
8 
10 
8 
8 
8 

1 
2 
4 

10 
8 
8 
8 
8 

1 
2 
4 
8 
10 
8 
8 
8 

25 

500 

600 
700 
800 

25 

1000 

1100 
1200 
1300 

25 

400 
500 

600 
7 00 

25 

600 

7 00 
800 
900 

25 

900 
1000 

1100 
1200 

13 1 
113 

97 
2 14 
17 1 
165 
143 
116 

349 
406 
361 
215 
261 
280 
237 
104 

173 
156 
111 
139 
128 
128 
138 
96 

201 
173 
151  
179 
170 
177 
110 
119 

347 
265 
256 
225 
149 
202 

6 1  
54 

0.90 
0.78 
0.67 
1.48 
1.19 
1.14 
0.99 
0.80 

2.40 
2.80 
2.49 
1.48 
1.80 
1.93 
1.63 
1.28 

1.19 
1.07 
0.76 
0.96 
0.88 
0.88 
0.95 
0.67 

1.39 
1.20 
1.04 
1.24 
1.17 
1.22 
0.76 
0.82 

2.39 
1.83 
1.77 
1.55 
1.03 
1.39 
0.42 
0.37 

10.7 
10.6 
11.4 
12.5 
11.6 
10.5 
10.5 
9.7 

32.6 
34.1 
39.2 
32.1 
36.3 
32.6 
24.4 
24.6 

13.8 
14.9 
17.4 
20.5 
18.9 
20.0 
20.4 
14.3 

16.9 
19.1 
18.0 
20.5 
21.6 
19.5 
17.1 
17.1 

26.3 
29.0 
30.0 
31.6 
30.9 
31.7 
24.0 
27.4 

74 
73 
79 
86 
80 
72 
72 
67 

225 
235 
270 
22 1 
2 50 
225 
169 
170 

95 
103 
120 
1 4 1  
130 
138 
140 
98 

116 
132 
124 
1 4 1  
149 
135 
118 
118 

1 8 1  
200 
207 
2 18 
213 
2 19 
166 
189 

1.21 
1.06 
0.85 
1.69 
1.47 
1.54 
1.38 
1.26 

1.13 
1.23 
0.91 
0.66 
0.72 
0.85 
1.00 
0.79 

1.27 
1.02 
0.63 
0.68 
0.68 
0.63 
0.67 
1.12 

1.19 
0.90 
0.83 
0.88 
0.79 

0.74 
0.75 

1.33 
0.89 
0.86 
0.71 
0.49 
0.63 
0.25 
0.20 

0.89 
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Table 4 

Average Creep Rates for the 
Five Types of Ceramic Fibers Tested 

Fiber Test Applied Strain Rate Strain Rate 
Type Temperature Stress* from f Hour from $ Hour 

to 1 Hour to End of Test** 

("C) (ksi) (10'6/hour) (10-6/hour) 

Astroquartz 9288 400 95 
500 
600 
700 

Nicalon NLM-102 800 162 
900 
1000 
1100 

Nextel 312 

Nextel 380 

Nextel 480 

400 
500 
600 
7 00 

500 
600 
7 00 
800 

7 00 
800 
900 

1000 

77 

91 

43 

27 1 
1110 
2110 
2200 

94 
461 
548 
890 

301 
72 

1420 
1490 

302 
335 
669 
1820 

1030 
783 
1180 
1040 

125 
547 
1320 
1690 

29 
139 
255 
452 

190 
10 
513 
1080 

9 
177 
345 
1490 

350 
201 
493 
547 

*Creep Stresses were 80% of ultimate stress at highest test temperature 
**Typically four hours 
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e l e v a t e d  t es t  temperatures  used f o r  t h e  c r e e p  t e s t i n g  of t h e  f i v e  types 

of ceramic f i b e r s  were t y p i c a l l y  d i f f e r e n t  t han  t h o s e  used f o r  t h e  

s ta t ic  t e n s i l e  t e s t i n g  of each type of f i b e r ,  f o r  t h e  r easons  p r e v i o u s l y  

d i scussed .  

A typical s t r a i n  ve r sus  t ime curve gene ra t ed  from t h e  c r e e p  t e s t i n g  

is  p r e s e n t e d  i n  F igu re  15, t o  i l l u s t r a t e  t h e  c r e e p  response observed f o r  

t h e  ceramic f i b e r s  t e s t e d  i n  t h e  p r e s e n t  s tudy .  The remainder of t h e  

c r e e p  cu rves  are included i n  Appendix B. A l l  f i b e r s  were loaded t o  

80 p e r c e n t  of t h e  s t a t i c  u l t i m a t e  stresses measured a t  t h e  test 

temperatures  given i n  T a b l e  4 .  This  80 p e r c e n t  stress l e v e l  w a s  set by 

NASA-Ames, t o  p rov ide  c reep  d a t a  a t  a stress as close as p r a c t i c a l  t o  

t h e  u l t ima te  s t r e n g t h  of each type of ceramic f i b e r .  Each c r e e p  tes t  

was t e rmina ted  a f t e r  f o u r  hours;  recovery s t r a i n  was n o t  monitored. 

The c r e e p  rates p resen ted  h e r e  (Table 4 )  were c a l c u l a t e d  us ing  a 

l i n e a r  r e g r e s s i o n  technique t o  c a l c u l a t e  t h e  s l o p e s  between t h e  t w o  

d i s c r e t e  t ime  i n t e r v a l s .  One time i n t e r v a l  was between one-half  hour 

and one hour e l apsed  time ( i . e . ,  nea r  t h e  beginning of each c reep  t e s t ) .  

The second i n t e r v a l  was between one-half hour and t h e  end of each t es t ,  

t y p i c a l l y  f o u r  hours  to ta l  c reep  d u r a t i o n .  F igu re  15 i l l u s t r a t e s  t h e  

two s l o p e s  c a l c u l a t e d  from t h e  s t r a i n  v e r s u s  t ime creep curves.  The 

s h o r t e r  t i m e  i n t e r v a l  y i e lded  a h i g h e r  c r e e p  rate,  as expected and as 

observed i n  T a b l e  4 and on F igu re  15. S o m e  creep rates were a c t u a l l y  

measured as s m a l l  nega t ive  va lues  i n d i c a t i n g  t h e  s t r a i n s  being measured 

were ve ry  s m a l l .  These s m a l l  n e g a t i v e  values were no t  used i n  

c a l c u l a t i n g  t h e  average va lues  l i s t e d  i n  Table 4. 
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Figure  15.  Typica l  S t r a i n  vs .  T ime  Creep P l o t  Showing Two Creep 
S t r a i n  Rates. 
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SECTION 5 

CONCLUSIONS 

The five types of ceramic fibers tested exhibited reasonable static 

mechanical properties over a wide temperature range, each fiber being 

tested up to a maximum temperature consistent with its particular 

capabilities. T h e  spent at the higher elevated temperatures proved to 

be a parameter to consider due to some fiber degradation occurring 

during the creep testing. Creep testing was thus performed at slightly 

lower test temperatures than static tensile testing temperatures. The 

Nicalon NLM-102 silicon carbide fibers were tested over the highest 

temperature range, while the Nextel 312 glass fibers were tested over 

the lowest temperature range of all types of fibers. The Astroquartz 

9288 glass fibers and Nextel 380 and 480 alumina/silica/boria fibers 

were tested over intermediate temperature ranges between the Nextel 312 

and Nicalon NLM-102 fibers. 

All five fiber types tested exhibited mechanical properties 

comparable with published literature values, as noted in the Summary of 

this report. These ceramic fibers are extremely brittle, which 

contributed to the scatter seen in some of the reported data. Strength 

properties were most affected, with high standard deviations being 

obtained. Variations in cross-sectional area of the fibers also 

contributed to the scatter seen in the data. 

The high temperature test chambers designed and built for this 

program worked well, as did the temperature controllers. However, at 

least two more permanently mounted thermocouples will be added to the 

chambers in the heated zone, one near the top and one near the bottom, 



to allow better monitoring of temperature gradients. Also, better 

materials will be sought for the chamber heating elements, which 

periodically failed due to the high temperatures used in this program. 

The creep apparatus designed and built for this program worked very 

well. No major modifications are envisioned for this piece of 

equipment at the present time. 
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Appendix A 

Individual Single Fiber Static Tensile Test Data 
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STATIC TENSILe SPECI" " B E R  CODE 

Eight digits total : I' UNAVWXYZ 

U - Test Temperature 

R - 25°C 
4 - 400°C 
5 - 500°C 
6 - 600°C 
7 - 700°C 
8 - 800°C 
9 - 900°C 
0 - l0OO0C 
1 - 1100°C 
2 - 1200°C 
3 - 1300°C 

NA - Signifies NASA-Ames Program 

V - Fiber Type 

1 - Astroquartz 9288 
2 - Nicalon NLM-102 
6 - Nextel 312 
8 - Nextel 380 
9 - Nextel 480 

WX - Gage Length 

01 - 1" 
02 - 2" 
04 - 4" 
08 - 8" 
10 - 10" 

YZ - Specimen Number 

01 through 07 

Example: "2NA20803" 

v = 2  -- 1200°C Test Temperature 
NA = NA -- NASA-Ames Program 
u = 2  -- Nicalon NLM-102 Fiber 
WX = 08 - -  8" Gage Length 
YZ = 03 -- Specimen No. 3 



TABLE A2 

INDIVIDUAL SINGLE FIBER ROOM TEMPERATURE 

STATIC TEST DATA FOR NICALON NLM-102 

Specimen Fiber Cross- Tensile Tensile U 1 t imat e 
No. Sectional Area Strength Modulus Strain 

(p2) (10-'in2) (GPa) (ksi) (GPa) (Msi) (percent) 

1" Gage Length 
RNA2 0 10 1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
Average 
Std. Dev. 

2" Gage Length 
RNA20201 

2 
3 
4 
5 
6 
7 
8 
9 
10 

Average 
Std. Dev. 

4" Gage Length 
RNA2 0 4 0 1 

2 
3 
4 
5 
6 
7 
8 
9 
10 

Average 
Std. Dev. 

150 2.32 2.37 344.0 
3.16 458.0 
0.00" 000.0" 
0.00" ooo.o* 
2.32 335.8 
0.00" 000.0" 
2.17 314.5 
o.oo* 000.O* 
1.99 289.2 
2.41 349.4 
2.40 348.5 
0.40 58.0 

-- 

150 2.32 0.00" 000.0" 
2.42 351.2 
3.13 454.1 
2.97 430.9 
2.52 365.2 
2.80 405.8 
2.96 430.0 
2.78 402.4 
0.00" ooo.o* 
0.00" 000.0" 
2.80 405.7 
0.25 36.9 

-- 

150 2.32 2.06 
2.24 
2.59 
2.07 
3.13 
3.36 
0.00" 
1.64 
3.07 
2.25 
2.49 
0.58 

299.0 
324.6 
375.4 
300.5 
454.6 
487.9 
000.0" 
238.2 
445.9 
326.6 
361.4 
84.7 

212 30.7 
240 34.8 
000" 00.0" 
ooo* 00.0" 
214 31.0 
OOO* 00.0" 
203 29.5 
OOO* 00.0" 
253 36.7 
227 32.9 
225 32.6 
19 2.7 

- -  

000" 00.0" 
174 25.3 
325 47.1 
302 43.9 
190 27.6 
205 29.7 
212 30.7 
236 34.2 
000" OO.O* 
000" 00.0" 
235 34.1 
57 8.3 

- -  

202 29.3 
224 32.4 
250 36.2 
264 38.4 
315 45.7 
336 48.7 
000" 00.0" 
250 36.3 
308 44.7 
285 41.3 
270 39.2 
44 6.4 

- -  

1.07 
1.33 
0.00" 
0.00" 
1.09 
0.00" 
1.06 
0.00" 
1.07 
1.14 
1.13 
0.10 

- 

0.00" 
1.38 
0.97 
0.98 
1.32 
1.35 
1.39 
1.19 
0.00" 
9.00" 
1.23 
0.18 

0.98 
1.00 
1.04 
0.78 
0.99 
1.00 
0.00" 
0.65 
1.00 
0.78 
0.91 
0.14 

- 

* Numbers not used in calculating the Average or Standard Deviation 
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I TABLE A4 

I N D I V I D U A L  SINGLE FIBER ROOM TEMPERATURE 

STATIC TEST DATA FOR NEXTEL 380 

Specimen F i b e r  Cross- T e n s i l e  T e n s i l e  U 1 t i m a t  e 
N o .  S e c t i o n a l  Area S t r e n g t h  Modulus S t r a i n  

(pm') ( 1 0 - 7 i n 2 )  (GPa) ( k s i )  (GPa) (Msi) ( p e r c e n t )  

1" Gage Lenqth 
RNA80101 

2 
3 
4 

6 
7 

9 
10 

a 

Ave r age 
S td .  Dev. 

2" Gaqe Lenqth 
RNA80201 

2 
3 
4 
5 
6 
7 

9 
10 

a 

Average 
S t d .  Dev. 

4" Gage Length 
RNA80401 

2 
3 
4 
5 
6 
7 
8 
9 

10 
Average 
S t d .  Dev. 

85  1.32 1.92 
1.12 
1.00 
1.38 
1.80 
1.28 
0 .  00" 
1.01 
1.48 
1.52 
1.39 
0.33 

85 1.32 0.93 
1.44 
1.17 
1.33 
1.46 
0.82 
1.57 
0.90 
1 . 2 1  
1.13 
1.20 
0.26 

85 1.32 0.85 
1.02 
0.71 
0.99 
1.40 
1.03 
1.33 
1.10 
0.95 
0.00" 
1.04 
0.22 

278.4 
162.2 
144.6 
199.5 
261.8 
185.0 
000.0" 
146.4 
214.0 
220.4 
201.4 

47.6 

134.4 
208.1 
169.6 
193.0 
212.4 
118.7 
227.2 
131.0 
175.1 
164.3 
173.4 

37.1 

123.3 
148.0 
102.3 
143.7 
203.5 
149.5 
192.4 
158.8 
137.5 
000.0" 
151.0 
31.5 

129 
116 
79 

111 
130 
122 
000" 
117 
128 
115 
116 
16 

- 

115 
139 
117 
147 
132 
137 
135 
137 
138 
122 
132 

10 

- 

124 
115 
120 
122 
133 
120 
139 
128 
118 
000" 
124 

8 

- 

18.7 
16.8 
11.5 
16.1 
18.8 
17.7 
00.0" 
17.0 
18.6 
16.6 
16.9 

2.2 

16.7 
20.1 
17.0 
21.4 
19.2 
19.9 
19.6 
19.8 
20.0 
17.6 
19.1 

1.5 

17.9 
16.7 
17.3 
17.7 
19.3 
17.4 
20.2 
18.6 
17.1 
00.0" 
18.0 
1.1 

1.49 
0.98 
1.26 
1.22 
1 .38  
1.05 
0.00" 
0.86 
1.13 
1.31 
1.19 
0.20 

0.81 
1.03 
1.00 
0.91 
1.10 
0.60 
1.16 
0.62 
0.87 
n.93 
0.90 
0.19 

0.68 
0.88 
0.60 
0.80 
1.05 
0.85 
0.95 
0.85 
0.80 
0.  00" 
0.83 
0.13 

* Numbers n o t  used i n  c a l c u l a t i n g  t h e  Average or  Standard Deviat ion 
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TABLE A6 

INDIVIDUAL SINGLE FIBER HIGH TEMPERATURE 

STATIC TEST DATA FOR ASTROQUARTZ 9288 

Specimen Fiber Cross- Tensile Tensile U 1 t ima te 
No. Sectional Area Strength Modulus Strain 

(pm') (10-7in2) (GPa) (ksi) (GPa) (Msi) (percent) 

5OO0C, 8" Gaqe Length 

5NA10801 
2 
3 
4 
5 

Average 
Std. Dev 

60 0.93 1.36 197 84.5 12.3 1.61 
1.76 255 84.9 12.3 2.06 
0.77 112 72.9 10.6 1.09 
0.89 128 77.8 11.3 1.13 

80.5 11.7 1.61 1.13 163 
60 0.93 1.18 171  80.1 11.5 1.50 

0 0 0.39 57 5.0 0.7 0.40 

-- - -  

5OO0C, 10" Gage Length 

5NA110 0 1 60 0.93 1.64 237 84.2 12.2 
2 1.33 193 90.0 13.0 
3 1.27 184 84.4 12.2 
4 1.58 229 82.6 12.0 

89.4 1 3 . 0  5 - 227 - - 1.57 - 
Average 60 0.93 1.48 214 86.1 12.5 
Std. Dev. 0 0 0.17 24 3.3 0.5 

1.93 
1.45 
1.50 
1.83 
1.74 

1.69 
0.21 

600°C, 8" Gage Length 

6NA10801 60 0.93 1.54 223 77.6 11.3 1.96 
'.. 3 1.13 163 68.8 10.0 1.60 
3 1.08 157 70.5 10.2 1.49 
4 1.18 170 74.0 10.7 1.57 
5 0.76 - 110 70.4 10.2 1.07 -- 

Average 60 0.93 1.14 165 72.3 10.5 1.54 
S t d .  Dev. 0 0 0.28 40 3.5 0.5 0.32 
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TABLE A7 

INDIVIDUAL SINGLE FIBER HIGH TEMPERATURE 

STATIC TEST DATA FOR NICALON NLM-102 

T e n s i l e  T e n s i l e  U 1  t b a t e  Specimen F i b e r  Cross- 
No. S e c t i o n a l  k e a  S t r e n g t h  Modulus S t r a i n  

(p2) ( 1 0 - 7 i n 2 )  (GPa)  ( k s i )  (GPa) ( M s i )  (percent) 

1000°C, 8" Gage Length 

ONA2 0 80 1 150 
2 
3 
4 
5 
6 

Average 150 
Std .  Dev 0 

1000°C, 10" Gage Length 

2.32 1.87 
1.76 
1.88 
2.08 
1.42 
1.80 - 

2.32 1.80 
0 0.22 

ONA21001 150 2.32 1.51 
2 1.42 
3 0.99 
4 1.84 
5 1.76 
6 1.37 

Average 150 2.32 1.48 
Std .  Dev. 0 0 0.30 

27 1 277 
254 247 
273 228 
301 272 
206 253 
261 - 223 - 
261 250 
31 22 

2 19 
206 
144 
267 
254 
198 

2 15 
44 

40.2 
35.9 
33.1 
39.4 
36.7 
32.3 

36.3 
3.2 

201 29.2 
221 32.1 
207 30.0 
263 38.1 
235 34.1 
198 28.6 - -  
221 32.1 
25 3.6 

0.67 
0.70 
0.79 
0.77 
0.56 
0.80 

0.72 
0.92 

0.74 
0.63 
0.48 
0.70 
0.73 
0.68 

0.66 
0.10 

llOO°C, 8" Gage Length 

1NA2080 1 150 2.32 1.76 255 214 31.0 0.82 
2 1.34 194 172 24.9 0.79 
3 2.42 351 256 37.1 0.95 
4 1.54 223 212 30.8 0.73 

2.61 - 379 271 39.2 0.96 5 - 
Average 150 2.32 1.93 280 22s 32.6 0.85 
Std .  Dev. 0 0 0.55 81 39 5.7 0.10 
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TABLE A8 

INDIVIDUAL SINGLE FIBER HIGH TEMPERATURE 

STATIC TEST DATA FOR NEXTEL 312 

Specimen Fiber Cross- Tensile Tensile Ultimate 
No. Sectional Area Strength Modulus Strain 

(w2) (10-7in2) (GPa) (ksi) (GPa) (Msi) (percent) 

400"C, 8" Gaqe Length 

4NA6 0 8 0 1 77 1.19 1.00 145 139 20.2 0.72 
2 1.00 146 137 19.9 0.73 
3 0.96 139 136 19.7 0.70 
4 0.98 142 149 21.6 0.65 
5 0.86 144 20.9 0.59 124 - -  - 

Average 77 1.19 0.96 139 141 20.5 0.68 
Std. Dev. 0 0 0.06 9 5 0.8 0.06 

500"C, 8" Gage Length 

5NA60801 77 

F.verage 77 
Std. Dev. 0 

1.19 0.77 
0.81 
0.86 
0.84 
0.88 
1.15 

1.19 0.88 
0 0.14 

112 130 
117 138 
124 129 
122 122 
128 126 
167 - 138 - 
128 130 
20 6 

18.8 
20.1 
18.6 
17.7 
18.2 
20.0 

18.9 
1.0 

0.59 
0.58 
0.70 
0.70 
0.69 
0.84 

5-50 
0.09 

500"C, 10" Gaqe Length 

SNA6 100 1 77 1.19 1.16 168 183 26.5 0.62 
2 0.63 92 124 18.0 0.50 
3 0.88 128 133 19.4 0.66 
4 0.98 14 1 132 19.1 0.72 

0.63 5 - 0.75 - 118 17.1 109 - - 
Average 77 1.19 0.88 128 138 20.0 (3.63 
Std. Dev. 0 0 0.20 29 26 3.7 0.08 
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TABLE A9 

INDIVIDUAL SINGLE FIBER HIGH TEMPERATURE 

STATIC TEST DATA FOR NEXTEL 380 

Spec h e n  F i b e r  Cross- T e n s i l e  Tens i l e  U 1 t imat e 
N o .  S e c t i o n a l  A r e a  S t r eng th  Modulus S t r a i n  

(p2) ( 1 0 - 7 i n 2 )  (GPa) ( k s i )  (GPa) ( M s i )  ( p e r c e n t )  

600°C, 8'' Gage Length 

6NA8080 1 85 1.32 1.28 186 147 21.4 0.87 
2 1.41 205 167 24.2 0.85 
3 1.39 201 148 21.5 0.94 
4 0.80 116 141 20.5 0.58 

140 20.4 0.71 5 0.99 - 143 - - 
Aver age 85 1 . 3 2  1.17 170 149 21.6 0.79 
S td .  Dev. 0 0 0.27 39 11 1.5  0.14 

I 
I 
I 
1 

6OO0C, 10" Gage Length 

6NA8 100 1 85 1.32 1.17 170 137 19.9 0.85 
2 1.32 192 147 21 .3  0.93 
3 1.27 184 149 21 .6  0.85 
4 1.24 180 143 20.7 0.87 
5 1.18 - 17 1 130 18.8 0.88 - -  

Ave r a g  e 85 1.32 1 . 2 4  179 141 20.5 0.88 
S t d .  Dev. 0 0 0 . 0 6  9 8 1.1 0.03 

1 
I 
1 

7OO0C, 8" Gage Length 

7 NA80 8 0 1 85 1.32 1.55 225 163 23.6 0.96 
2 1.02 148 131 19.0 0.79 
3 1.38 200 134 19.4 1.01 
4 1.22 177 125 18.1 0.95 
5 0.92 - 134 120 17.4 0.75 - -  

Average 85 1.32 1.22 177 135 19.5 0.89 
S td .  Dev. 0 0 0.26 37 17 2.4 0 .11 
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TABLE A10 

INDIVIDUAL SINGLE FIBER HIGH TEMPERATURE 

STATIC TEST DATA FOR NEXTEL 480 

Specimen Fiber Cross- Tensile Tensile U 1 t hate 
No. Sectional Area Strength Modulus Strain 

(prn') (10-7in2) (GPa) (ksi) (GPa) (Msi) (percent) 

9OO"C, 8" Gage Lenqth 

9NA9 0 8 0 1 65 1.01 
2 
3 
4 
5 

Average 65 1.01 
Std. Dev. 0 0 

1OOO"C, 8" Gage Length 

ONA9080 1 65 1.01 
2 
3 
4 
5 

Average 
Std. Dev. 

65 1.01 
0 0 

lOOO"C,  10" Gage Length 

ONA9 100 1 65 1.01 
2 
3 
4 
5 
6 

Average 65 1.01 
sta. Dev. 0 0 

1.56 227 203 29.4 0.78 
1.45 211 251 36.4 0.57 
1.72 249 237 34.4 0 -72 
1.36 198 196 28.4 0.68 

242 - 204 29.6 0.81 1.67 - 
1.55 225 218 31.6 0.71 
0.15 21 24 3.5 0.09 

0.68 98 170 24.6 0.40 
1.68 244 273 39.5 0.62 
1.72 250 263 38.1 0.65 
1.41 204 193 28.0 0.73 

195 28.3 0.75 1.46 - 212 - - 
1.39 202 219 31.7 0.63 
0.42 61 46 6.7 0.14 

1.09 158 
0.77 112 
1.37 199 
1.05 152 
1.14 165 

110 0.76 - 
1.03 149 
0.23 61  

214 31.0 0.50 
241 34.9 0.32 
229 33.2 0.60 
210 30.5 0.50 
182 26.5 0.62 
200 29.0 0.38 - -  
213 30.9 0.49 
21 3.0 0.12 
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Appendix B 

I n d i v i d u a l  S i n g l e  F i b e r  Tens i l e  Creep T e s t  Data 



TENSILE CREEP SPECIMEN " B E R  CODE 

A l l  creep specimens begin  wi th  a "DT". 

Four d i g i t s  fo l low which i d e n t i f y  t h e  f i b e r  type, test  
tempera ture ,  and specimen number, viz., "DTWXYZ" where: 

W - F i b e r  T y p e  

1 - Astroquartz 9288 
2 - Nicalon NLM-102 
6 - Nextel 312 
8 - Nextel 380 
9 - Nextel 480 

X - Temperature Code 

4 - 400°C 
5 - 500°C 
5 - 600°C 
7 - 700°C 
8 - 800°C 
9 - 900°C 
0 - l0OO0C 
1 - 1 1 0 0 ° C  

YZ - Specimen Number 

0 1  through 18 

Example : DT2912 
Explana t ion:  

"DT" - Creep Specimen 
"211 - 
"9" - Test Temperature: 9nnor 
"12" - Specimen N o . :  12 

F i b e r  Type :  Nicalon NLM-102 



Table B2 

INDIVIDUAL SINGLE FIBER HIGH TEMPERATURE 

TENSILE CREEP DATA FOR NICALON NLM-102 

Specimen Test Creep Rate Creep Rate 
No. Temperature From f Hour From f Hour to 

to 1 Hour End of Test 

("C) ( 10- 6/Hour) (10'6/Hour) 

DT2506 
DT2809 
DT2811 
Average 
Std. Dev. 

DT2911 
DT2912 
DT2913 
Average 
Std. Dev. 

DT2013 
DTZ015 
DT2016 
Ave rag e 
Std. Dev. 

DT2108 
DT2 113 
DT2116 
Average 
Std. Dev. 

800 

900 

1000 

110n 

-432* 
10 
177 
94 
118 

60 1 
537 
243 
461 
19 1 

498 
708 
437 
548 
142 

1090 
3 57 
1220 
890 
466 

-91" 
30 
27 
29 

2 

320 
86 
12 
139 
160 

230 
247 
287 
255 
29 

- 

500 
121 
736 
452 
3 10 

* Numbers not used in calculating the Average or Standard Deviation. 
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Table B4 

I INDIVIDUAL SINGLE FIBER HIGH TEMPERATURE 

TENSILE CREEP DATA FOR NEXTEL 380 

Specimen Test Creep Rate Creep Rate 
No. Temperature From 2 Hour From 4 Hour to 

to 1 Hour End of Test 

("C) ( 10-6/Hour) (10-6/Hour) 

DT8501 
DT8502 
DT8503 
Average 
sta. Dev. 

DT8601 
DT8602 
DT8606 
Average 
Std. Dev 

DT87 0 1 
DT8702 
DT87 0 3 
Aver age 
Std. Dev. 

DTS803 
DT8805 
DT8809 
Average 
Std. Dev. 

500 

600 

700 

800 

196 
295 
416 
302 
- 
110 

276 
436 
294 
335 
88 

732 
7 60 
517 
669 
133 

- 

1840 
2 160 
1460 
1820 
350 

9 
-34" 
-35" 
9 
- 

0 

222 
196 
112 
177 
58 

392 
343 
300 
345 
46 

- 

1350 
2220 
887 
1490 
67 8 

* Numbers not used in calculating the Average or Standard Deviation. 
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Astroquartz. Overall view of whole strand cross sectioned, areas 1-3. 
(200X) 
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Astroquartz. General view of fiber from area 1. (6000X) 

Astroquartz. General view of fibers from area 2. (4100X) 
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Group of Nicalon NLM-102 f ibers .  (lOOOX) 
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General view of Nextel 312 fibers. (1060X) 

Detailed view of Nextel 312 fiber. (5640X) 
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Detailed view of protrusion on  Nextel 312 f iber .  (22,OOOX) 

Group of Nextel 312 f ibers .  (2200X) 
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Group of Nextel 380 fibers. (1300X) 
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